To calculate the voltage drop, input the current, length, material, AWG, and type of circuit. The calculator will use the appropriate formula to determine the voltage drop.
For AC Single-phase and DC circuits:
$$ V_{drop} = \frac{2 \times I \times \rho \times L}{A} $$
For Three-phase circuits:
$$ V_{drop} = \frac{\sqrt{3} \times I \times \rho \times L}{A} $$
Let's calculate the voltage drop for a copper wire (AWG 10) with a current of 15 A, a length of 50 meters, and a single-phase AC circuit.
Given:
Using the formula for AC Single-phase:
$$ V_{drop} = \frac{2 \times 15 \times 1.68 \times 10^{-8} \times 50}{5.261 \times 10^{-6}} $$
Calculating the voltage drop:
$$ V_{drop} = \frac{2 \times 15 \times 1.68 \times 10^{-8} \times 50}{5.261 \times 10^{-6}} = 4.9 \text{ V} $$
| AWG | Area (mm²) | Resistance (Ω/km) |
|---|---|---|
| 0000 | 107.22 | 0.1608 |
| 000 | 85.029 | 0.2028 |
| 00 | 67.431 | 0.2557 |
| 0 | 53.475 | 0.3224 |
| 1 | 42.408 | 0.4066 |
| 2 | 33.631 | 0.5127 |
| 3 | 26.67 | 0.6464 |
| 4 | 21.151 | 0.8152 |
| 5 | 16.773 | 1.028 |
| 6 | 13.302 | 1.296 |
| 7 | 10.549 | 1.634 |
| 8 | 8.366 | 2.061 |
| 9 | 6.634 | 2.599 |
| 10 | 5.261 | 3.277 |
| 11 | 4.172 | 4.132 |
| 12 | 3.309 | 5.211 |
| 13 | 2.624 | 6.571 |
| 14 | 2.081 | 8.285 |
| 15 | 1.65 | 10.448 |
| 16 | 1.309 | 13.174 |
| 17 | 1.038 | 16.612 |
| 18 | 0.823 | 20.948 |
| 19 | 0.6527 | 26.415 |
| 20 | 0.5176 | 33.308 |
| 21 | 0.4105 | 42.001 |
| 22 | 0.3255 | 52.962 |
| 23 | 0.2582 | 66.784 |
| 24 | 0.2047 | 84.213 |
| 25 | 0.1624 | 106.19 |
| 26 | 0.1288 | 133.9 |
| 27 | 0.1021 | 168.85 |
| 28 | 0.081 | 212.92 |
| 29 | 0.0642 | 268.48 |
| 30 | 0.0509 | 338.55 |
| 31 | 0.0404 | 426.9 |
| 32 | 0.032 | 538.32 |
| 33 | 0.0254 | 678.8 |
| 34 | 0.0201 | 855.96 |
| 35 | 0.016 | 1079.3 |
| 36 | 0.0127 | 1361 |
| 37 | 0.01 | 1716.2 |
| 38 | 0.007967 | 2164.1 |
| 39 | 0.006318 | 2728.9 |
| 40 | 0.00501 | 3441.1 |