Voltage Drop Calculator

Calculate Voltage Drop













Voltage Drop in Long-Distance Transmission

Long-distance transmission of electrical power can result in voltage drops due to several factors, including resistance in transmission lines, inductive reactance, and the skin effect.

Factors Contributing to Voltage Drop

Mitigation Strategies

To mitigate voltage drops in long-distance transmission, several strategies can be employed, such as:

Regular maintenance and monitoring of transmission lines, as well as ongoing upgrades to infrastructure and technology, are essential to ensuring the reliable and efficient transmission of electrical power over long distances.

How to Calculate Voltage Drop

To calculate the voltage drop, input the current, length, material, AWG, and type of circuit. The calculator will use the appropriate formula to determine the voltage drop.

For AC Single-phase and DC circuits:

$$ V_{drop} = \frac{2 \times I \times \rho \times L}{A} $$

For Three-phase circuits:

$$ V_{drop} = \frac{\sqrt{3} \times I \times \rho \times L}{A} $$

Example Calculation

Let's calculate the voltage drop for a copper wire (AWG 10) with a current of 15 A, a length of 50 meters, and a single-phase AC circuit.

Given:

Using the formula for AC Single-phase:

$$ V_{drop} = \frac{2 \times 15 \times 1.68 \times 10^{-8} \times 50}{5.261 \times 10^{-6}} $$

Calculating the voltage drop:

$$ V_{drop} = \frac{2 \times 15 \times 1.68 \times 10^{-8} \times 50}{5.261 \times 10^{-6}} = 4.9 \text{ V} $$

AWG to Cross-Sectional Area and Resistance

Use the table below to find the cross-sectional area and resistance for different AWG sizes:

AWG Cross-Sectional Area (mm²) Resistance (Ohms per 1000m)
0000 (4/0) 107.22 0.1608
000 (3/0) 85.029 0.2028
00 (2/0) 67.431 0.2557
0 (1/0) 53.475 0.3224
1 42.408 0.4066
2 33.631 0.5127
3 26.67 0.6464
4 21.151 0.8152
5 16.773 1.028
6 13.302 1.296
7 10.549 1.634
8 8.366 2.061
9 6.634 2.599
10 5.261 3.277
11 4.172 4.132
12 3.309 5.211
13 2.624 6.571
14 2.081 8.285
15 1.65 10.448
16 1.309 13.174
17 1.038 16.612
18 0.823 20.948
19 0.6527 26.415
20 0.5176 33.308
21 0.4105 42.001
22 0.3255 52.962
23 0.2582 66.784
24 0.2047 84.213
25 0.1624 106.19
26 0.1288 133.9
27 0.1021 168.85
28 0.081 212.92
29 0.0642 268.48
30 0.0509 338.55
31 0.0404 426.9
32 0.032 538.32
33 0.0254 678.8
34 0.0201 855.96
35 0.016 1,079.3
36 0.0127 1,361
37 0.01 1,716.2
38 0.007967 2,164.1
39 0.006318 2,728.9
40 0.00501 3,441.1

Material Properties

Material Conductivity, σ (Ω⋅m)⁻¹ Resistivity, ρ (Ω⋅m) Temperature Coefficient, α (°C)⁻¹
Silver 6.29×10⁷ 1.59×10⁻⁸ 0.0038
Copper 5.95×10⁷ 1.72×10⁻⁸ 0.0039
Gold 4.10×10⁷ 2.44×10⁻⁸ 0.0034
Aluminum 3.77×10⁷ 2.65×10⁻⁸ 0.0039
Tungsten 1.79×10⁷ 5.60×10⁻⁸ 0.0045
Iron 1.03×10⁷ 9.71×10⁻⁸ 0.0065
Platinum 0.94×10⁷ 10.60×10⁻⁸ 0.0039
Steel 0.50×10⁷ 20.00×10⁻⁸ 0.006

How much voltage drop is acceptable

The acceptable voltage drop is typically within 5%, but it can vary based on electrical system requirements, load conditions, cable types, length, and national/regional electrical standards.